

PF Instability: *Complications of MPFL Reconstruction*

A. Amendola MD, Professor, Orthopedic Surgery Director of Sports Medicine Duke University

PF Joint Instability

- Considerations for treatment:
- **1. Figure out the problem**
 - Limb Alignment
 - Increased TT-TG
 - Valgus knee
 - Femoral/ tibial Rotational deformity
 - Patella Alta
 - Trochlear Dysplasia
 - Traumatic Dislocation / MPFL injury

Outcomes of MPFL Reconstruction

Isolated Medial Patellofemoral Ligament Reconstruction for Patellar Instability Regardless of Tibial Tubercle–Trochlear Groove Distance and Patellar Height

Outcomes at 1 and 2 Years

Brandon J. Erickson,*[†] MD, Joseph Nguyen,[‡] BS, Katelyn Gasik,[‡] ATC, Simone Gruber,[‡] MS, Jacqueline Brady,[§] MD, and Beth E. Shubin Stein,[‡] MD Investigation performed at Hospital for Special Surgery, New York, New York, USA

- 90 pts (age 19.4 +/- 5.6 years)
- 96% at 1 yr, 100% at 2 years no further instability
- Mean RTS 8 mos
- Mean TT-TG distance 14.7 +/- 5.4 (range -2.2- 26.8 mm)
- Mean P Height 1.2+/-0.11 (range 0.89-1.45)
- Mean Trochlear Depth : 1.8+/- 1.4 (range 0.05-6.85)

The Ability of Medial Patellofemoral Ligament Reconstruction to Correct Patellar Kinematics and Contact Mechanics in the Presence of a Lateralized Tibial Tubercle

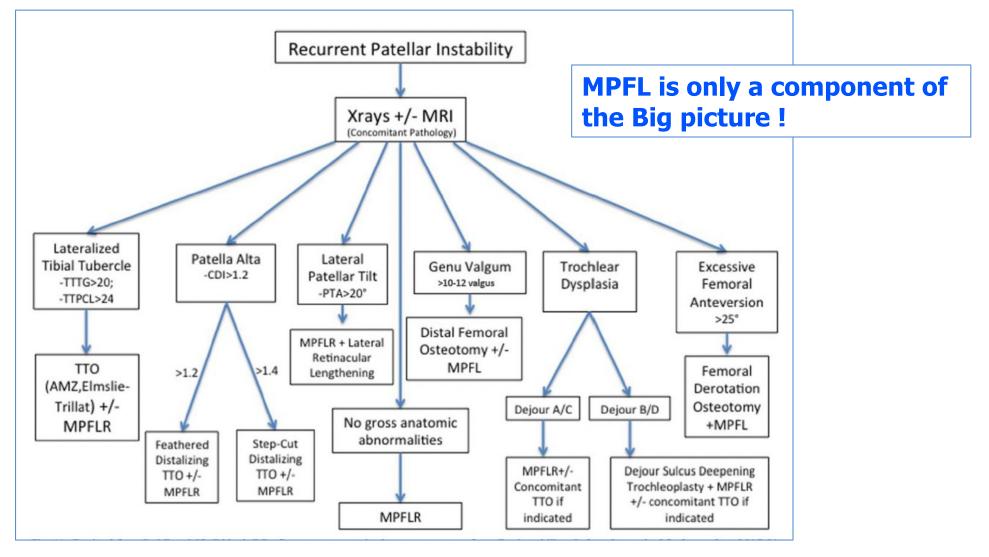
Joanna M. Stephen,^{*} PhD, Alexander L. Dodds,^{*} FRCS (Orth), Punyawan Lumpaopong,^{*†} PhD, Deiary Kader,[‡] MD, Andy Williams,[§] FRCS (Orth), and Andrew A. Amis,^{*||¶} FREng, DSc *Investigation performed at Imperial College London, London, UK*

- Cadaveric study of PFJ kinematics in 8 knees
- Isolated MFPL reconstruction restored tilt and translation with TT-TG up to 15 mm
- Both tilt and translation significantly altered if TT-TG greater than 15mm

Effect of Trochlear Dysplasia on Outcomes After Isolated Soft Tissue Stabilization for Patellar Instability

Laurie A. Hiemstra,^{*†‡} MD, PhD, FRCSC, Sarah Kerslake,^{†§} MSc, Michael Loewen,[†] MD, FRCSC, and Mark Lafave,^{||} CAT(C), PhD Investigation performed at Banff Sport Medicine, Banff, Canada

- 203 cases of isolated MPFL reconstruction (21 no dysplasia, 89 Dejour A, 93 Dejour B-D)
- Worse dysplasia and >5mm supratrochlear bump correlated with worse outcomes (Banff Patella Score and VAS)


Clinical Outcomes After Isolated Medial Patellofemoral Ligament Reconstruction for Patellar Instability Among Patients With Trochlear Dysplasia

Joseph N. Liu,^{*†} MD, Jacqueline M. Brady,[‡] MD, Irene L. Kalbian,[§] BA, Sabrina M. Strickland,^{||} MD, Claire Berdelle Ryan,[¶] MD, Joseph T. Nguyen,[#] MPH, and Beth E. Shubin Stein,^{||} MD *Investigation performed at Hospital for Special Surgery, New York, New York, USA*

- 121 repeat dislocators (4.4 events) almost all dysplastic (92% Dejour B,C,D)
- Recommended TTO if >20mm TT-TG or CD>1.4
- 3 dislocations (2.5%) in 24 mo (mean 44) follow up
- All dislocators severely dysplastic (B-D) and CD>1.32



PF Instability : Treatment

Diduch et al, Advances in PF Surgery, 2018

Spectrum of PF disease

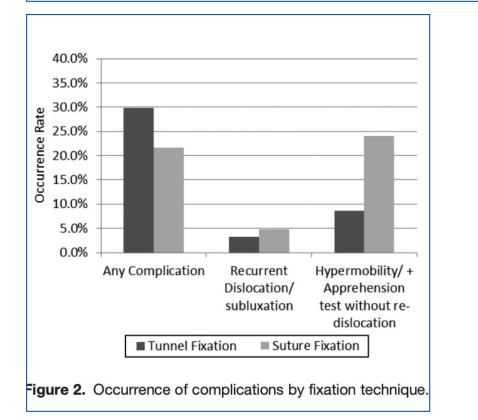
2SV

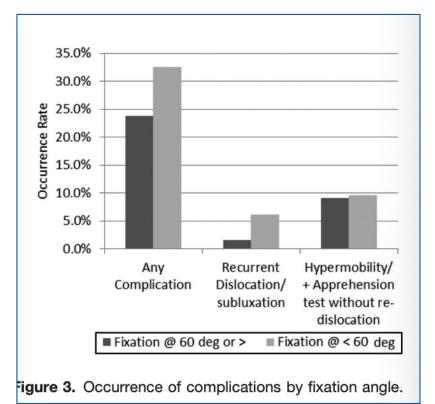
Instability : Spectrum of Severity

- 45 yo M
- Chronic
 dislocation
- Dysplasia

Complications of MPFL reconstruction

Shah et al , AJSM , 2021

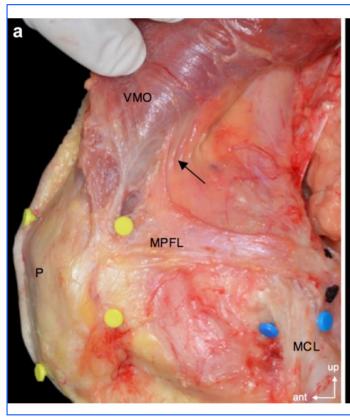

- 25 articles identified / heterogeneous data/ level 4 studies
- 164 complications/ 629 knees (26.1%)
- Residual instability
- Patellar fractures (tunnels)
- 26 reoperations
 - Recurrent instability
 - Arthrofibrosis
 - Hardware removal

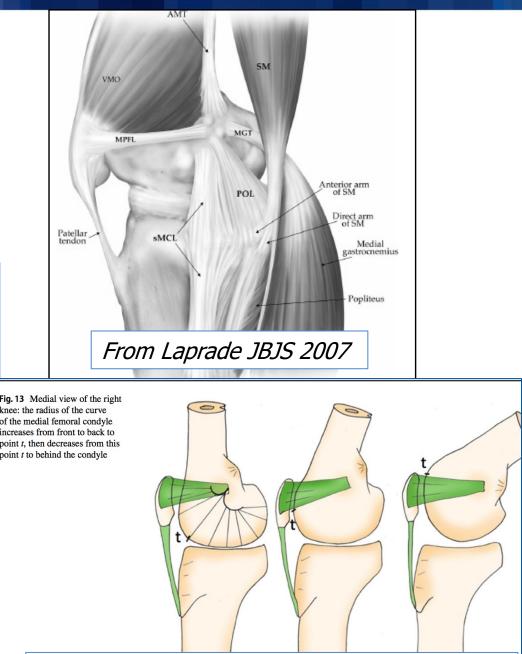

Complications of MPFL reconstruction

A Systematic Review of Complications (and Failures Associated With Medial Patellofemoral Ligament Reconstruction for Recurrent Patellar Dislocation

AJSM 2012

Jay N. Shah,* MD, MS, Jennifer S. Howard,[†] PhD, ATC, David C. Flanigan,[‡] MD, Robert H. Brophy,[§] MD, James L. Carey,^{||} MD, MPH, and Christian Lattermann,^{*¶} MD Investigation performed at the Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky





Femoral Tunnel placement / Tensioning

Anatomy + function

- VMO anatomy / MCL
- Imbrication/ advancement
- Knee flexion angle

Decante et al, Surgical and Radilogic Anatomy

Revision MPFL Reconstruction

Knee Surgery, Sports Traumatology, Arthroscopy https://doi.org/10.1007/s00167-021-06603-x

KNEE

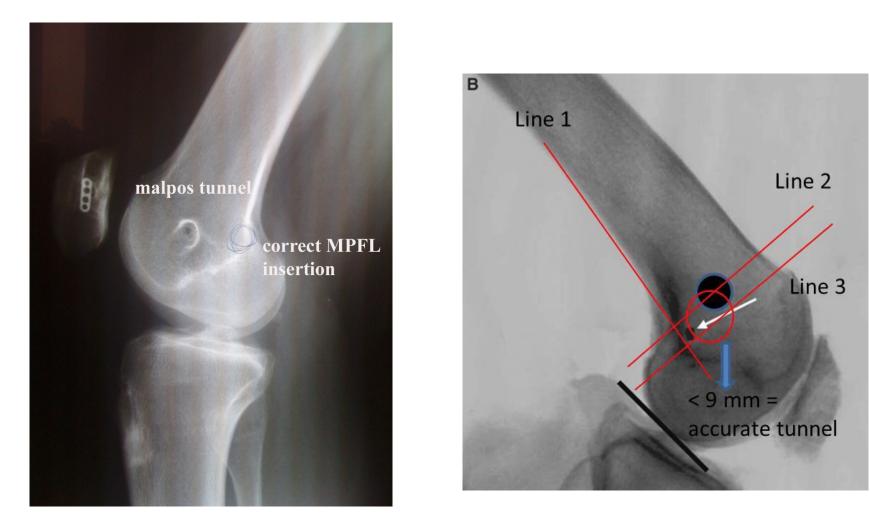
Femoral tunnel malposition is the most common indication for revision medial patellofemoral ligament reconstruction with promising early outcomes following revision reconstruction: a systematic review

Madison Walker¹ · Larissa Maini¹ · Jeffrey Kay² · Ali Siddiqui³ · Mahmoud Almasri^{2,4} · Darren de SA²

Received: 21 January 2021 / Accepted: 30 April 2021 © European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2021

Reasons for Revision Surgery:

- Not addressing associated pathology
 - Alignment , dysplasia
- Tunnel malposition

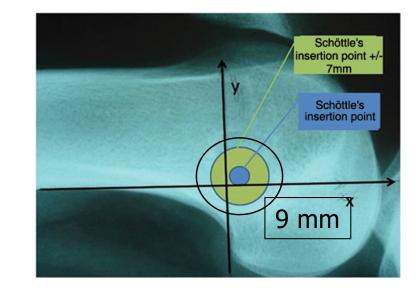


PF Instability : Complications of MPFL Reconstruction

- MPFL reconstruction technique
 - Non anatomic placement (femur)Patellar fracture (drill holes)

PF Instability : Complications of MPFL Reconstruction

Schottle et al AJSM 2007


IOJ 2014

Complications of MPFL Reconstruction

FEMORAL TUNNEL PLACEMENT IN MEDIAL PATELLOFEMORAL LIGAMENT RECONSTRUCTION

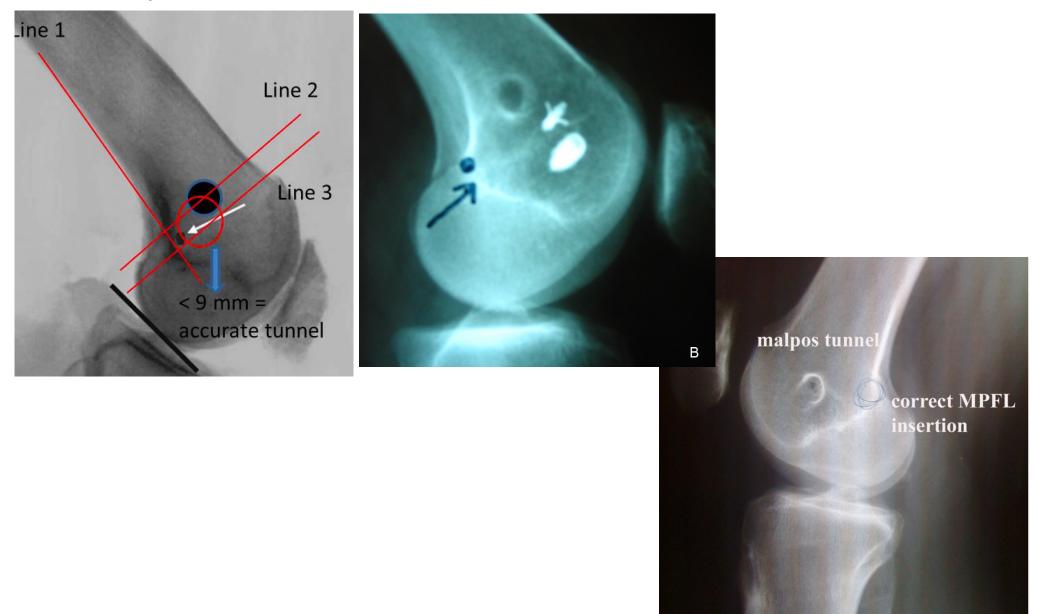
Mark McCarthy, MD¹, TJ Ridley, BS², Matthew Bollier, MD¹, Brian Wolf, MD¹, John Albright, MD¹, Annunziato Amendola, MD¹

- Reviewed 50 patients, 40 F
- 9 mm acceptable location

McCarthy et al, IOJ 2014

Table 1: Data on demographics, KOOS scores, radiographic tunnel placement and correlation

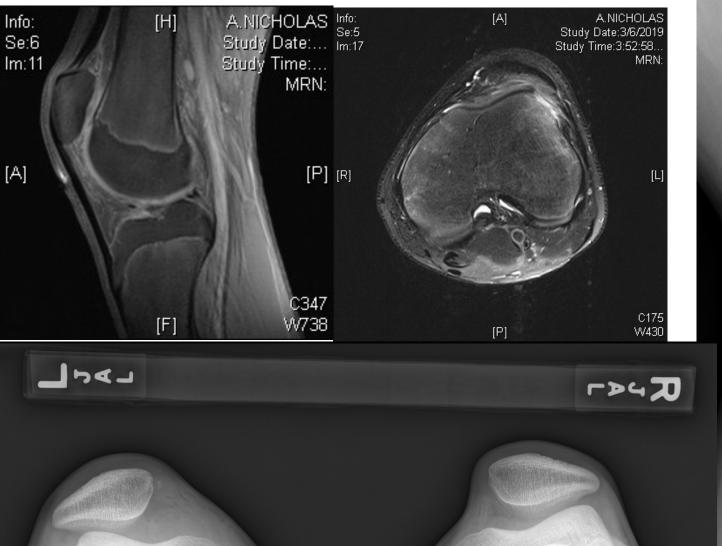
Age: Average: 31.3, Range: 14-54	Sex: 10 males, 40 females	
Tunnels within 9 mm isometric point (accurate placement): 16	Tunnel greater than 9 mm from isometric point (inaccurate placement): 34	
Accurate tunnel placement: 36% Inaccurate tunnel placement: 64%	Average distance tunnel place- ment from isometric point: 13.25 mm (range: 4-28.4)	
Average pre-operative KOOS scores: 42.0	Average post-operative KOOS scores: 47.65	
Pearson correlation coefficient: 0.23-Indicative of no correlation between femoral tunnel place- ment and post-operative KOOS scores.		


50 patients with MPFL reconstruction

64% abnormal (>9mm from ideal) tunnel position
Did not correlate with patient

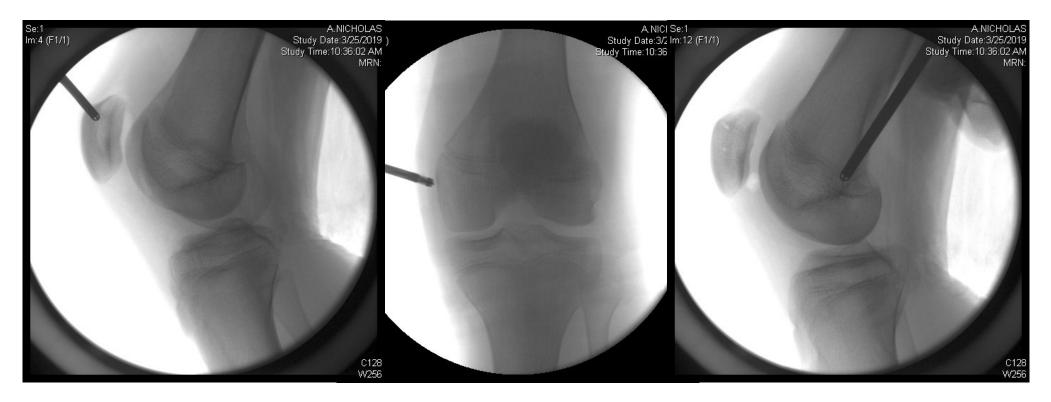
reported outcomes

McCarthy et al, IOJ 2010



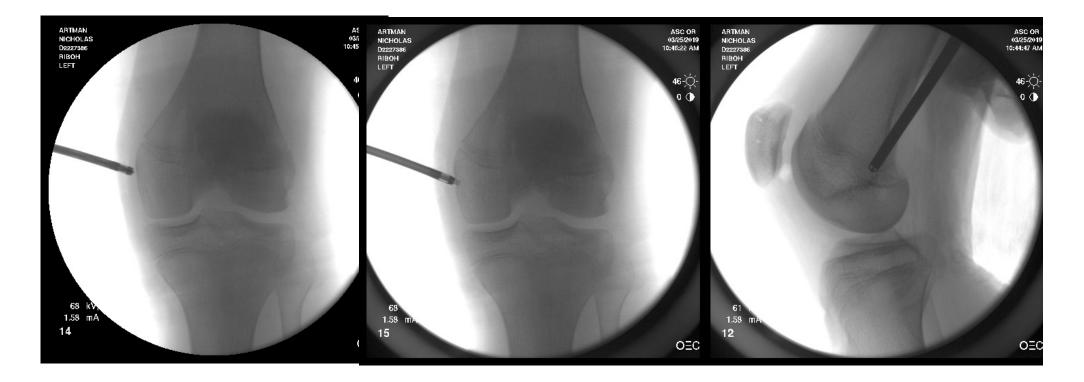
Anatomy

- Open physes and PF instability
 - MPFL origin close to the femoral physis
 - Nelitz et al (2011) : distal
 - Shea, Burks et al (2009) : Proximal



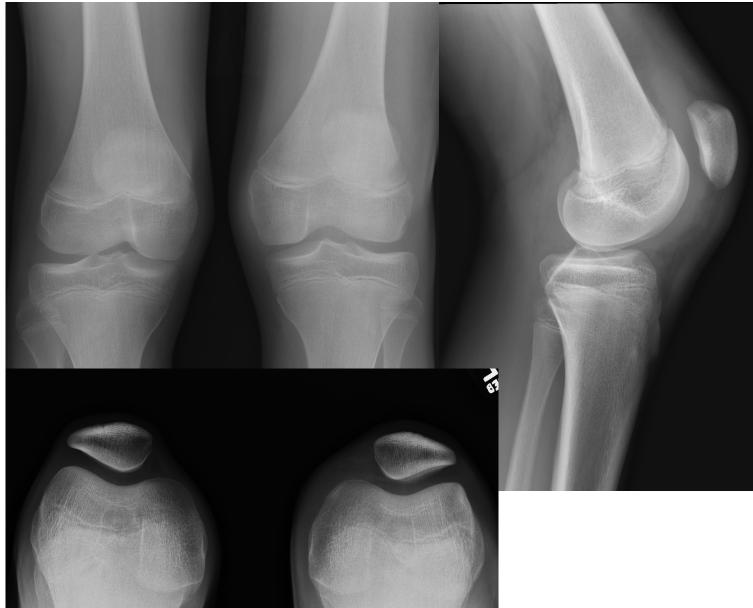
Technical considerations MPFL fixation : growth plates

UERECT

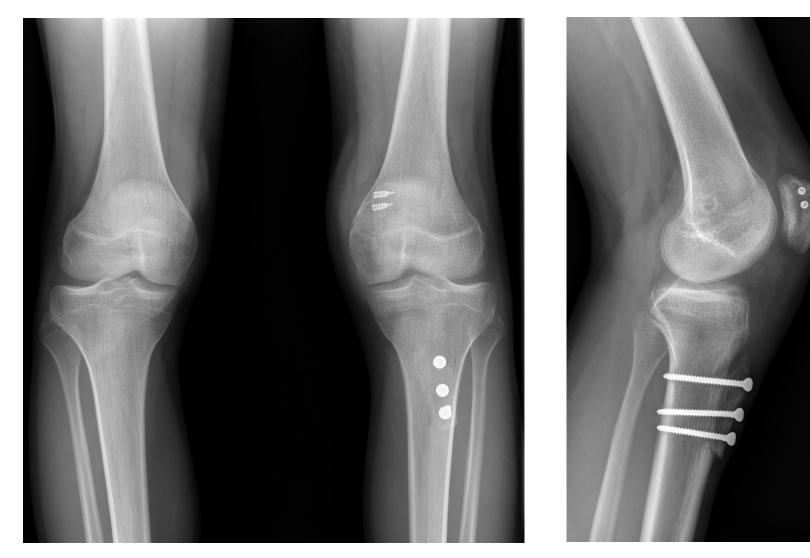

Technical considerations MPFL fixation : growth plates

(Anatomic) Anchor fixation on both the patella and femur

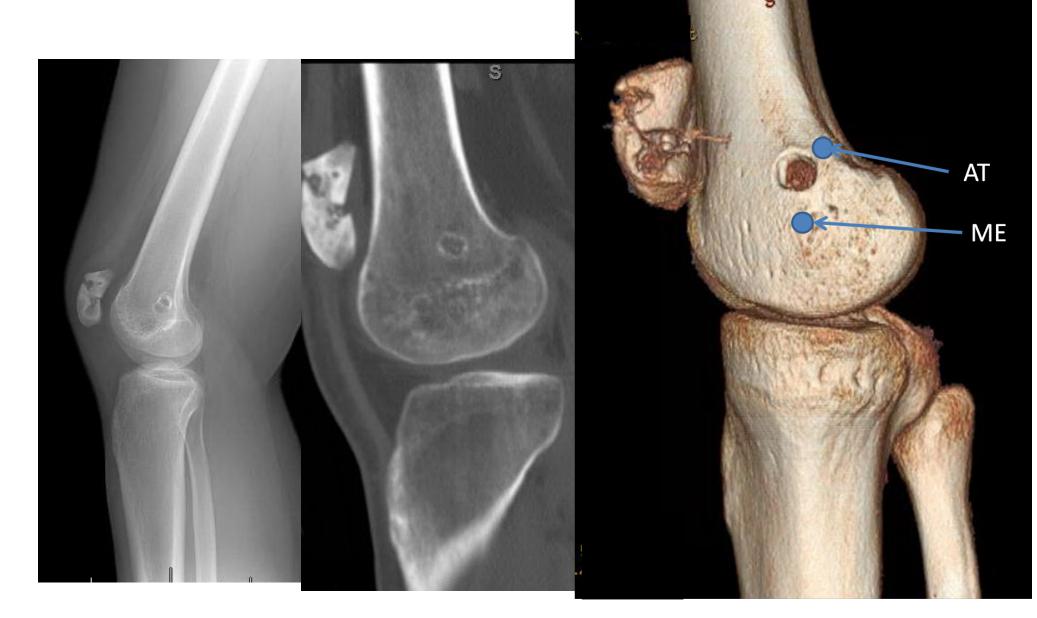
Poor tunnel placement : open physis/ patella alta



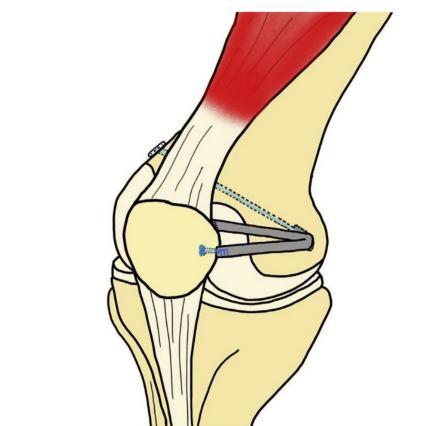
Poor tunnel placement : open physis patella alta

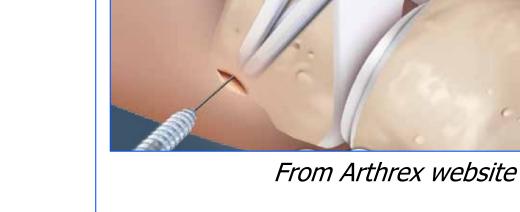

Poor tunnel placement : open physis

13 yo



Poor tunnel placement : open physis/ patella alta




23 yo F 2x MPFL reconstruction

Technical considerations MPFL fixation

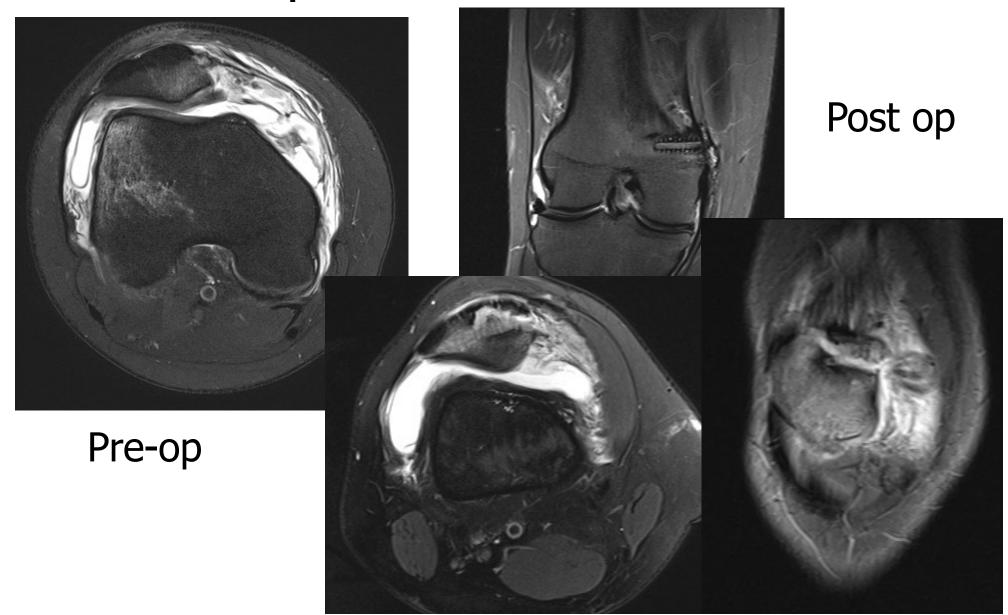


Fig. 4. Schematic drawing of isolated Medial Patellofemoral Ligament Reconstruction by using Soft Suture Anchor and adjustable cortical fixation system.

MPFL Complications : Patellar fracture

MPFL Complications : Patellar fracture

Outcomes of MPFL Reconstruction

Arthroscopy: The Journal of Arthroscopic & Related Surgery Available online 15 April 2019 In Press, Corrected Proof (?)

Systematic Review

Systematic Review of Medial PatellofemoralLigament Reconstruction Techniques:Comparison of Patellar Bone Socket and CorticalSurface Fixation TechniquesTable 2. Incidence of Patellar Fracture and Redislocation

Vishal S. Desai B.S., Adam J. Tagliero M.D., Chad W. Parkes M.D., Christopher L. Cam M.D., Michael J. Stuart M.D., Diane L. Dahm M.D., Aaron J. Krych M.D. 冬 四

Study	No. of Patients (Technique)	No. of Reported Patellar Fractures	Fracture Incidence	No. of Redislocation Events	Redislocation Incidence
Alm et al., ²³ 2017	30 (F)	0	0%	4	13%
Bitar et al., ⁹ 2012	21 (F)	0	0%	0	0%
Calapodopulos et al., ²⁵ 2016	22 (F)	0	0%	Undisclosed	_
Deie et al., ¹⁵ 2011	31 (F)	0	0%	0	0%
Fink et al., ²⁸ 2014	17 (F)	0	0%	0	0%
Goyal, ³⁰ 2013	32 (F)	0	0%	0	0%
Kang et al., ³² 2014	45 (F)	0	0%	0	0%
Viu et al., ⁴⁰ 2017	32 (F)	0	0%	0	0%
(Knee Sports Surg Traumatol Arthrosc)					
Valkering et al., ⁴⁴ 2017	31 (F)	0	0%	1	3%
Wagner et al., ⁴⁶ 2013	50 (F)	0	0%	1	2%
Vitonski et al., ⁴⁷ 2013	10 (F)	0	0%	0	0%
Csintalan et al., ²⁶ 2014	56 (S)	0	0%	0	0%
Ellera Gomes, ¹¹ 1992	30 (S)	1	3%	1	3%
Feller et al., ²⁷ 2014	26 (S)	0	0%	0	0%
Goncaives et al., ²⁹ 2011	22 (S)	Undisclosed	_	0	0
John and Pandya, ³¹ 2017	25 (S)	1	4%	2	8%
Kita et al., ³³ 2012	25 (S)	1	4%	0	0%
Kita et al., ³⁴ 2015	44 (S)	3	7%	2	5%
Krishna Kumar et al., ³⁵ 2014	30 (S)	0	0%	0	0%
.ee et al., ³⁶ 2018	50 (S)	0	0%	0	0%
ind et al., ³⁷ 2016	24 (S)	0	0%	5	21%
Matthews and Schranz, ³⁸ 2010	25 (S)	0	0%	0	0%
Aulliez et al., ³⁹ 2017	91 (S)	1	1%	0	0%
liu et al., ⁴¹ 2017 (<i>Med Sci Monit</i>)	30 (S)	0	0%	0	0%
anagopoulos et al., ⁴² 2008	25 (S)	1	4%	0	0%
anni et al., ⁴³ 2011	45 (S)	1	2%	0	0%
on Engelhardt et al., ⁴⁵ 2018	30 (S)	0	0%	0	0%
astur et al., ²⁴ 2015	28 F and 30 S	0 F and 1 S	0% F and 3% S	0 F and 0 S	0% F and 0%
Mikashima et al., ¹³ 2006	12 F and 12 S	0 F and 2 S	0% F and 17% S	0 F and 0 S	0% F and 0%

F, cortical fixation; S, patellar bone socket.

PFJ Preservation Surgery

Summary

- Figure out the problem
 - -Alignment, instability, dysplasia
- MPFL reconstruction should be considered, along with additional correction of underlying factors
- Complications can be avoided with careful preoperative evaluation and technical performance of the surgery

Thank you